Abstract
The hole-concentration (x) dependence of the three-dimensional energy-momentum dispersion in (Bi, Pb)2(Sr, La)2CuO(6+delta) has been investigated by angle-resolved photoemission spectroscopy. For a heavily overdoped sample of T(c) < or = 0.5 K, an energy dispersion of approximately 10 meV in width is observed in the vicinity of the (pi, 0) point with varying momentum along the c axis (k(z)). This k(z) dispersion is zero for underdoped, optimally doped, and slightly overdoped samples up to a doping level corresponding to T(c) = 22 k. At higher doping levels we observe significant dispersion of the order of 10 meV (sample with T(c) < or = 0.5 K). This is clear evidence that at a doping value corresponding to T(c) = 22 K, a crossover from two- to three-dimensional electronic structure occurs.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have