Abstract
The main goal of this article is to study an averaging principle for a class of two-time-scale stochastic differential delay equations in which the slow-varying process includes a multiplicative fractional Brownian noise with Hurst parameter H∈(12,1) and the fast-varying process is a rapidly-changing diffusion. We would like to emphasize that the approach proposed in this paper is based on the fact that a stochastic integral with respect to fractional Brownian motion with Hurst parameter in (12,1) can be defined as a generalized Stieltjes integral. In particular, to prove a limit theorem for the averaging principle, we will introduce a sequence of stopping times to control the size of multiplicative fractional Brownian noise. Then, inspired by the Khasminskii's approach, an averaging principle is developed in the sense of convergence in the p-th moment uniformly in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.