Abstract
Two lanthanide 3D coordination polymers [Ln2(L)4Cl2(H2O)4]n (Ln = Eu (1), Gd (2)) with quinoline-2-carboxylic acid (HL) as the ligand were successfully synthesized and characterized. Complex 1 exhibits a highly sensitive and selective luminescent response to 2,6-dipicolinic acid (DPA) in tap water and is virtually unaffected by interferences such as amino acids, aromatic carboxylic acids, and ions. With the addition of DPA, the luminescence intensity of complex 1 decreases rapidly to the naked eye. The detection limit of 1 toward DPA is 3.36 μM, which is much less than the infectious dose (60 μM) of the anthrax spores, indicating the high sensitivity of 1 to DPA. This study offers a basis for employing lanthanide complexes in real sample analysis, enabling direct and efficient detection of DPA with high sensitivity and specificity. Additionally, it is noteworthy that at a magnetic field strength of 7 T and a temperature of 3 K, the maximum entropy change for complex 2 attains a value of 23.56 J kg-1 K-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.