Abstract

Six thiophene-2,5-dicarboxylic acid incorporated and self-assembled zinc(II), cobalt(II) and manganese(II) coordination polymers [Zn(Tda)(py)]n (1), [Zn(Tda)(bipy)(H2O)·1.5H2O]n (2), [Zn(Tda)(phen)(H2O)]n (3), [Co(Tda)(phen)(H2O)]n (4), [Mn(Tda)(phen)]n (5) and [Mn(Tda)(H2O)2]n (6) have been synthesised and structurally characterised. Complex 1 is characterised as a two-dimensional parallelogram with a cavity of about 10.4×10.4 A, while complexes 2 and 3 (4) are one-dimensional linear and zig-zag coordination polymers with mainly hydrogen-bonding and stacking interactions contributing to their crystal packing, respectively. Complex 5 is a two-dimensional porous sheet with alternating 16- and 8-membered rings, while complex 6 is a three-dimensional porous coordination polymer. The diverse coordination properties of thiophene-2,5-dicarboxylate make it a good building block for the construction of coordination polymers of different architectures, which are dependent on both the end-capping ligand and the coordination geometry of the metal ions. Physical and thermal properties of these complexes have also been studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call