Abstract

We report two different approaches to isolate neutral and cationic mesocate-type metallosupramolecular architectures derived from coinage monovalent ions. For this purpose, we use a thiocarbohydrazone ligand, H2L (1), conveniently tuned with bulky phosphine groups to stabilize the MI ions and prevent ligand crossing to achieve the selective formation of mesocates. The neutral complexes [Cu2(HL)2] (2), [Ag2(HL)2] (3), and [Au2(HL)2] (4) were prepared by an electrochemical method, while the cationic complexes [Cu2(H2L)2](PF6)2 (5), [Cu2(H2L)2](BF4)2 (6), [Ag2(H2L)2](PF6)2 (7), [Ag4(HL)2](NO3)2 (8), and [Au2(H2L)2]Cl2 (9) were obtained by using a metal salt as the precursor. All of the complexes are neutral or cationic dinuclear mesocates, except the silver nitrate derivative, which exhibits a tetranuclear cluster mesocate architecture. The crystal structures of the neutral and cationic copper(I), silver(I), and gold(I) complexes allow us to analyze the influence of synthetic methodology or the counterion role on both the micro- and macrostructures of the mesocates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.