Abstract

To expand the family of transition metal oxynitride perovskites, the two-step synthesis of a series of tungsten-based metal oxynitride perovskites (EuW(O,N)3, NdW(O,N)3, PrW(O,N)3, LaW(O,N)3, and SrW(O,N)3) and their visible-light-driven photocatalytic water oxidation activity with the assistance of CoOx (2wt% Co) cocatalyst were studied in this work. The XRD results revealed that the cubic perovskite LnW(O,N)3 (Ln=Pr, Nd, and Eu) and SrW(O,N)3 phases and tetragonal perovskite LaW(O,N)3 phase were successfully synthesized by nitriding their corresponding oxide precursors at 900°C for 10–25h under an NH3 flow, with minor secondary phases in only PrW(O,N)3 and NdW(O,N)3. The highly porous structures of EuW(O,N)3, LaW(O,N)3, and SrW(O,N)3 were formed from the segregation of nanocrystals with average sizes of 140, 92, and 160nm, respectively. The surfaces of the NdW(O,N)3 and PrW(O,N)3 crystal structures were covered with plate-like crystals which can be identified as W5N4. No clear absorption edges were observed in the UV–Vis diffuse reflectance spectra of the tungsten-based metal oxynitrides owing to the extensive amount of reduced tungsten species (W5+ and W4+) or metallic tungsten and anion deficiency. Within 5h of the photocatalytic water oxidation half-reaction, the CoOx-loaded SrW(O,N)3 crystal structures exhibited the highest photostability and O2 evolution rate of 3.3μmolh−1 compared with CoOx-loaded LnW(O,N)3 (Ln=La, Pr, Nd, and Eu) crystal structures due possibly to the highest O/N ratio and more positively positioned top of valence band of SrW(O,N)3. The present work is expected to stimulate research into the development of more stable and efficient tungsten-based metal oxynitride perovskites in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.