Abstract

Tungsten-modified barium tantalum oxynitride is a new visible-light photocatalyst for water oxidation. In the present work, novel barium tantalum strontium tungsten oxynitride solid solutions, (BaTaO2N)1-x(SrWO2N)x, with a cubic Pm3[combining macron]m perovskite-type structure (x = 0.01 and 0.02) have been prepared by heating oxide precursors under an ammonia flow. These (BaTaO2N)1-x(SrWO2N)x catalysts exhibited photocatalytic water oxidation activity under visible light irradiation. The crystal structure, electron-density distribution, and optical properties of (BaTaO2N)1-x(SrWO2N)x (x = 0, 0.01, and 0.02) have been studied using synchrotron X-ray powder diffraction, Rietveld analysis, the maximum-entropy method (MEM), and UV-Vis reflectance measurements. The lattice parameters of (BaTaO2N)1-x(SrWO2N)x decreased linearly with increasing SrWO2N content x. The minimum electron density (MED) at the (Ta,W)-(O,N) bond, determined by the MEM analysis of (BaTaO2N)1-x(SrWO2N)x, increased with x, as supported by DFT-based calculations. These results indicate the formation of (BaTaO2N)1-x(SrWO2N)x solid solutions and enhanced covalent bonding due to the stronger W-N bond. The MED of the (Ta,W)-(O,N) bond was higher than that of (Ba,Sr)-(O,N), indicating that the (Ta,W)-(O,N) bond is more covalent. The presence of nitrogen in (BaTaO2N)1-x(SrWO2N)x was confirmed by the occupancy factor refined using neutron diffraction data and by the weight gain observed by thermogravimetric analysis in air. UV-Vis reflectance spectra and DFT calculations indicated that (BaTaO2N)1-x(SrWO2N)x contains W5+ cations with a [Xe] 4f14 5d1 electron configuration and exhibits a more n-type semiconducting character compared with BaTaO2N, which could improve the photocatalytic water oxidation activity under visible-light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.