Abstract
A 3D Hofmann-like metal-organic framework has been prepared which contains a 2,1,3-benzothiadiazole-based pillaring ligand. Encapsulation of a polycyclic aromatic hydrocarbon, chrysene, within the pore structure leads to a new pathway to multi-step spin crossover behaviour in which the observed two-step spin transition arises due to the presence of multiple site environments associated with local guest positional effects within the host lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.