Abstract

Sulfur is not normally considered a light-emitting material, even though there have been reports of a dim luminescence of this compound in the blue-to-green spectral region. Now, it is shown how to make red-emissive sulfur by a two-step oxidation approach using elemental sulfur and Na2 S as starting materials, with a high photoluminescence quantum yield of 7.2 %. Polysulfide is formed first and is partially transformed into Na2 S2 O3 in the first step, and then turns back to elemental S in the second step. The elevated temperature and relatively oxygen-deficient environment during the second step transforms Na2 S2 O3 into Na2 SO3 incorporated with oxygen vacancies, thus resulting in the formation of a solid-state powder consisting of elemental S embedded in Na2 SO3 . It shows aggregation-induced emission properties, attributed to the influence of oxygen vacancies on the emission dynamics of sulfur by providing additional lower energy states that facilitate the radiative relaxation of excitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call