Abstract

In this paper we give a complete classification of two-step nilpotent Leibniz algebras in terms of Kronecker modules associated with pairs of bilinear forms. Among these, we describe the complex and the real case of the indecomposable Heisenberg Leibniz algebras as a generalization of the classical (2n+1)-dimensional Heisenberg Lie algebra h2n+1. Then we use the Leibniz algebras - Lie local racks correspondence proposed by S. Covez to show that nilpotent real Leibniz algebras have always a global integration. As an application, we integrate the indecomposable nilpotent real Leibniz algebras with one-dimensional commutator ideal. Finally we show that every Lie quandle integrating a Leibniz algebra is induced by the conjugation of a Lie group and the Leibniz algebra is the Lie algebra of that Lie group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.