Abstract

The nonprocessive kinesin-14 Ncd motor binds to microtubules and hydrolyzes ATP, undergoing a single displacement before releasing the microtubule. A lever-like rotation of the coiled-coil stalk is thought to drive Ncd displacements or steps along microtubules. Crystal structures and cryoelectron microscopy reconstructions imply that stalk rotation is correlated with ADP release and microtubule binding by the motor. Here we report FRET assays showing that the end of the stalk is more than ~ 9 nm from the microtubule when wild-type Ncd binds microtubules without added nucleotide, but the stalk is within ~ 6 nm of the microtubule surface when the microtubule-bound motor binds an ATP analogue, matching the rotated state observed in crystal structures. We propose that the stalk rotation is initiated when the motor binds to microtubules and releases ADP, and is completed when ATP binds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.