Abstract

Electric vehicles (EVs) provide a cleaner alternative that not only reduces greenhouse gas emissions but also improves air quality and reduces noise pollution. The consumer market for electrical vehicles is growing very rapidly. Designing a network with adequate capacity and types of public charging stations is a challenge that needs to be addressed to support the current trend in the EV market. In this research, we propose a choice modeling approach embedded in a two-stage stochastic programming model to determine the optimal layout and types of EV supply equipment for a community while considering randomness in demand and drivers' behaviors. Some of the key random data parameters considered in this study are: EV's dwell time at parking {\sv location}, battery's state of charge, distance from home, willingness to walk, drivers' arrival patterns, and traffic on weekdays and weekends. The two-stage model uses the sample average approximation method, which asymptotically converges to an optimal solution. To address the computational challenges for large-scale instances, we propose an outer approximation decomposition algorithm. We conduct extensive computational experiments to quantify the efficacy of the proposed approach. In addition, we present the results and a sensitivity analysis for a case study based on publicly available data sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.