Abstract

Accurate segmentation of cardiac substructures in multi-modality heart images is an important prerequisite for the diagnosis and treatment of cardiovascular diseases. However, the segmentation of cardiac images remains a challenging task due to (1) the interference of multiple targets, (2) the imbalance of sample size. Therefore, in this paper, we propose a novel two-stage segmentation network with feature aggregation and multi-level attention mechanism (TSFM-Net) to comprehensively solve these challenges. Firstly, in order to improve the effectiveness of multi-target features, we adopt the encoder-decoder structure as the backbone segmentation framework and design a feature aggregation module (FAM) to realize the multi-level feature representation (Stage1). Secondly, because the segmentation results obtained from Stage1 are limited to the decoding of single scale feature maps, we design a multi-level attention mechanism (MLAM) to assign more attention to the multiple targets, so as to get multi-level attention maps. We fuse these attention maps and concatenate the output of Stage1 to carry out the second segmentation to get the final segmentation result (Stage2). The proposed method has better segmentation performance and balance on 2017 MM-WHS multi-modality whole heart images than the state-of-the-art methods, which demonstrates the feasibility of TSFM-Net for accurate segmentation of heart images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.