Abstract

Medical image reports are integral to clinical decision-making and patient management. Despite their importance, the confidentiality and private nature of medical data pose significant issues for the sharing and analysis of medical image data. This paper addresses these concerns by introducing a multimodal federated learning-based methodology for medical image reporting. This methodology harnesses distributed computing for co-training models across various medical institutions. Under the federated learning framework, every medical institution is capable of training the model locally and aggregating the updated model parameters to curate a top-tier medical image report model. Initially, we advocate for an architecture facilitating multimodal federated learning, including model creation, parameter consolidation, and algorithm enhancement steps. In the model selection phase, we introduce a deep learning-based strategy that utilizes multimodal data for training to produce medical image reports. In the parameter aggregation phase, the federal average algorithm is applied to amalgamate model parameters trained by each institution, which leads to a comprehensive global model. In addition, we introduce an evidence-based optimization algorithm built upon the federal average algorithm. The efficacy of the proposed architecture and scheme is showcased through a series of experiments. Our experimental results validate the proficiency of the proposed multimodal federated learning approach in generating medical image reports. Compared to conventional centralized learning methods, our proposal not only enhances the protection of patient confidentiality but also enriches the accuracy and overall quality of medical image reports. Through this research, we offer a novel solution for the privacy issues linked with the sharing and analyzing of medical data. Expected to assume a crucial role in medical image report generation and other medical applications, the multimodal federated learning method is set to deliver more precise, efficient, and privacy-secured medical services for healthcare professionals and patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call