Abstract

This study proposes a multi-level model predictive control (MPC) for a grid-connected wind farm paired to a hydrogen-based storage system (HESS) to produce hydrogen as a fuel for commercial road vehicles while meeting electric and contractual loads at the same time. In particular, the integrated system (wind farm + HESS) should comply with the “fuel production” use case as per the IEA-HIA report, where the hydrogen production for fuel cell electric vehicles (FCEVs) has the highest unconditional priority among all the objectives. Based on models adopting mixed-integer constraints and dynamics, the problem of external hydrogen consumer requests, optimal load demand tracking, and electricity market participation is solved at different timescales to achieve a long-term plan based on forecasts that then are adjusted at real-time. The developed controller will be deployed onto the management platform of the HESS which is paired to a wind farm established in North Norway within the EU funded project HAEOLUS. Numerical analysis shows that the proposed controller efficiently manages the integrated system and commits the equipment so as to comply with the requirements of the addressed scenario. The operating costs of the devices are reduced by 5%, which corresponds to roughly 300 commutations saved per year for devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.