Abstract
In a traction power supply system, the design of traction substations significantly influences both the system’s operational stability and investment costs, while the energy management strategy of the flexible substations affects the overall operational expenses. This study proposes a novel two-stage system optimization design method that addresses both the configuration of the system and the control parameters of traction substations. The first stage of the optimization focuses on the system configuration, including the optimal location and capacity of traction substations. In the second stage, the control parameters of the traction substations, particularly the droop rate of reversible converters, are optimized to improve regenerative braking energy utilization by applying a fuzzy logic-based adjustment strategy. The optimization process aims to minimize the total annual system cost, incorporating traction network parameters, power supply equipment costs, and electricity expenses. The parallel cheetah algorithm is employed to solve this complex optimization problem. Simulation results for Metro Line 9 show that the proposed method reduces the total annual project costs by 5.8%, demonstrating its effectiveness in both energy efficiency and cost reduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have