Abstract
ABSTRACT Experimental and theoretical studies on the spontaneous ignition process of isolated fuel droplets were carried out. Time dependent temperature fields around the igniting droplets were observed by interferometry so that two step temperature rise can be detected. Some experiments are performed under microgravity to obtain reference data. Induction times are examined as a function of ambient temperature. As a result, a zero temperature coefficient region is found, which is equivalent to the NTC (negative temperature coefficient) region for the ignition of premixed gas. A numerical model is developed applying a simplified chemical reaction model that includes the low and the high temperature reactions. The model is able to reproduce the two step temperature rise and the roles of the two kinds of reactions on the ignition process up to the establishment of a diffusion flame around the droplet are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.