Abstract
This paper presents a system for the detection of ships and oil spills using side-looking airborne radar (SLAR) images. The proposed method employs a two-stage architecture composed of three pairs of convolutional neural networks (CNNs). Each pair of networks is trained to recognize a single class (ship, oil spill, and coast) by following two steps: a first network performs a coarse detection, and then, a second specialized CNN obtains the precise localization of the pixels belonging to each class. After classification, a postprocessing stage is performed by applying a morphological opening filter in order to eliminate small look-alikes, and removing those oil spills and ships that are surrounded by a minimum amount of coast. Data augmentation is performed to increase the number of samples, owing to the difficulty involved in obtaining a sufficient number of correctly labeled SLAR images. The proposed method is evaluated and compared to a single multiclass CNN architecture and to previous state-of-the-art methods using accuracy, precision, recall, F-measure, and intersection over union. The results show that the proposed method is efficient and competitive, and outperforms the approaches previously used for this task.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have