Abstract

In this work we tackle the problem of automatic recognition of ancient coin types using a semisupervised learning method, namely Graph Transduction Games. Such problem is complex, mainly due to the low inter-class and large intra-class variations and the task becomes even more complex due to lack of labeled large datasets from certain ancient ages. In this paper we propose a new dataset which is chiefly the extension of a previous one both in terms of quantity and diversity. Moreover, we propose a game-theoretic model that exploits both sides of a coin to achieve higher classification accuracy. We experimentally demonstrate that proposed approach brings performance improvement in this complex task even when few number of labelled images are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.