Abstract
The arrangement of functional groups exerts a crucial role in determining the characteristics of compounds. In this study, we synthesized two novel short-wave ultraviolet (UV) nonlinear optical (NLO) crystals: KBe2(SeO3)2(OH)·H2O and K2Be(SeO3)2. Interestingly, the two compounds show the same SeO3 triangular pyramids and K-O polyhedra. However, the two compounds exhibit distinct beryllium-oxygen anion groups: BeO3(OH) for KBe2(SeO3)2(OH)·H2O and BeO4 for K2Be(SeO3)2. This results in the SeO3 groups within the structure having different orientations, ultimately leading to the two compounds exhibiting completely different optical properties. KBe2(SeO3)2(OH)·H2O displays a large second harmonic generation (SHG) effect equivalent to 2× KH2PO4 (KDP), coupled with a large birefringence of 0.078 at 546 nm. In contrast, the SHG effect and birefringence of K2Be(SeO3)2 are only 0.33× that of KDP and 0.024 at 546 nm, respectively. Structural analyses and theoretical calculations indicate that these pronounced differences in optical properties stem from variations in the arrangement of the SeO3 functional groups. This study not only sheds light on the correlation between crystal structure and optical behavior but also presents a hopeful avenue for the advancement of materials in the short-wave UV spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.