Abstract

Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly dispersive, polyphagous insect pest that severely defoliates crops. Excessive reliance on synthetic insecticides leads to ecological pollution and resistance development, urging scientists to probe eco-friendly biopesticides. Here, we explore the virulence of an entomopathogenic fungus, Beauveria bassiana, against S. exigua, resulting in 88% larval mortality. Using an age-stage, two-sex life table, we evaluated the lethal and sublethal effects of B. bassiana on the demographic parameters of S. exigua, including survival, development, and reproduction. Sublethal (LC20) and lethal concentrations (LC50) of B. bassiana impacted the parental generation (F0), with these effects further influencing the demographic parameters of the first filial generation (F1). The infected F1 offsprings showed a reduced intrinsic rate of increase (r), mean generation time (T), and net reproduction rate (R0). Larval developmental duration varied significantly between the control (10.98 d) and treated groups (LC20: 10.42; LC50: 9.37 d). Adults in the treated groups had significantly reduced lifespans (M: 8.22; F: 7.32 d) than the control (M: 10.00; F: 8.22 d). Reduced fecundity was observed in the B. bassiana-infected groups (LC20: 313.45; LC50: 223.92 eggs/female) compared to the control (359.55 eggs/female). A biochemical assay revealed elevated levels of detoxification enzymes (esterases, glutathione S-transferases, and acetylcholinesterase) in the F0 generation after B. bassiana infection. However, the enzymatic activity remained non-significant in the F1 generation likely due to the lack of direct fungal exposure. Our findings highlight the enduring effects of B. bassiana on the biological parameters and population dynamics of S. exigua, stressing its use in eco-friendly management programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.