Abstract

The generation of CTL against Qa-1 Ag in C57BL/6 (B6) (Qa-1b) and B6.Tlaa (Qa-1a) congenic strains requires in vivo priming with the Qa-1 alloantigen together with a helper Ag, such as H-Y. The primed precursors obtained from these female mice generate Qa-1-specific CTL activity upon culture in vitro. Although the presence of the H-Y helper Ag is not required for the in vitro sensitization, no response occurs in the absence of CD4 cells. Addition of unprimed B6.Tlaa CD4 cells from Qa-1 incompatible radiation bone marrow chimeras (B6.Tlaa----B6), that are presumably tolerant to Qa-1b, provide helper activity for Qa-1b-specific CTL. This indicates that although CD4 cells are obligatory for the Qa-1 response, they need not be specific for alloantigens on the APC to generate helper activity in in vitro cultures. Addition of unirradiated B6 CD8-depleted spleen cells to CD4-depleted B6.Tlaa anti-B6 cultures in the presence of either B6.Tlaa CD4 cells or rIL-2 prevents the generation of Qa-1 specific CTL. This inhibition is not due to an anti-idiotypic Ts cell since B6.Tlaa----B6 chimeric cells do not suppress an anti-Qa-1b response. Rather, this finding is consistent with that of a veto cell mechanism. To determine whether CD4 cells themselves exhibit veto activity, highly purified CD4 populations were tested for their ability to inhibit the generation of Qa-1-specific CTL. CD4 cells precultured for 2 to 3 days with Con A and rIL-2 specifically inhibit CTL activity whereas resting cells do not, similar to that noted for CD8 veto cells. The relative efficiency of activated CD4 cells is greater than that of resting NK cells but is less than that of activated CD8 or NK cells. Thus, CD4 cells not only provide helper activity for CTL precursors, but also act as veto cells to prevent the generation of CTL activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.