Abstract

Two robust imaging technologies are reviewed that provide subsurface geologic information in challenging environments. The first one is wave-equation dispersion (WD) inversion of surface waves and guided waves (GW) for the shear-velocity (S-wave) and compressional-velocity (P-wave) models, respectively. The other method is traveltime inversion for the velocity model, in which supervirtual refraction interferometry (SVI) is used to enhance the signal-to-noise ratio of far-offset refractions. We have determined the benefits and liabilities of both methods with synthetic seismograms and field data. The benefits of WD are that (1) there is no layered-medium assumption, as there is in conventional inversion of dispersion curves. This means that 2D or 3D velocity models can be accurately estimated from data recorded by seismic surveys over rugged topography, and (2) WD mostly avoids getting stuck in local minima. The liability is that WD for surface waves is almost as expensive as full-waveform inversion (FWI) and, for Rayleigh waves, only recovers the S-velocity distribution to a depth no deeper than approximately 1/2 to 1/3 wavelength of the lowest-frequency surface wave. The limitation for GW is that, for now, it can estimate the P-velocity model by inverting the dispersion curves from GW propagating in near-surface low-velocity zones. Also, WD often requires user intervention to pick reliable dispersion curves. For SVI, the offset of usable refractions can be more than doubled, so that traveltime tomography can be used to estimate a much deeper model of the P-velocity distribution. This can provide a more effective starting velocity model for FWI. The liability is that SVI assumes head-wave first arrivals, not those from strong diving waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.