Abstract
This paper explores the dynamics of two spatially separated superconducting flux qubits, initially in a maximally correlated state, without mutual interaction. The system is modeled using the master intrinsic decoherence equation with the flux-qubits-resonator interaction Hamiltonian. The effects of initial state, detuning, and decoherence on the generated oscillatory correlation dynamics and the sudden death-birth phenomenon of the two flux-qubits entanglement are examined. The results demonstrate that qubit-resonator-qubit interactions have a high ability to generate quantum interferometric power and local quantum uncertainty correlations beyond that of concurrence entanglement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.