Abstract

The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π)-ϕ where ϕ=π4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π)-ϕ(π)π+ϕ(π)π-ϕ. The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1=3π8n,ϕ2=π8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π)π+ϕ1(π)π-ϕ1 and (π)ϕ2(π)-ϕ2(π)π+ϕ2(π)π-ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call