Abstract
It is shown theoretically that the two-plasmon-decay instability (TPD) in laser–plasma interaction can be excited in the non-eigenmode regime, where the plasma density is larger than the quarter critical density. This appears when the laser amplitude is larger than a certain threshold value, which is found to increase with the plasma density. In this regime, the excited electrostatic modes have a constant frequency around half of the incident light frequency. The theoretical model is validated by particle-in-cell simulations. The simulation results show that the non-eigenmode TPD has a higher threshold amplitude for the pump laser than the non-eigenmode stimulated Raman scattering (SRS) excited in the plasma above the quarter critical density. In inhomogeneous plasma, competition between non-eigenmode TPD and non-eigenmode SRS occurs since the excitation of the former is normally accompanied by the latter.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have