Abstract

Oxygen sensing structures were generated by two-photon microfabrication. By copolymerizing metalloporphyrins with a two-photon (2P) photo-initiated polymer, oxygen sensors were patterned into complex 3-D shapes. The sensors were generated on the interior walls of small bore capillaries to allow for controlled concentrations of oxygenated water and cell-rich media to be pumped through their local environment. Phosphorescence lifetime of the patterns were acquired at known levels of O2 as a standard for measuring the respiration rate of a tiny population of bacterial cells. In addition, we report that the inclusion of the Pt-Porphyrin significantly reduces the 2P polymerization threshold. Fabricating near the inferred polymerization threshold, 3-D structures as small as 50 nm were observed in both the Pt-Porphyrin enhanced and the pure photopolymerizable monomers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call