Abstract
Abstract Two-photon fluorescence microscopy has become an important research tool in both biological and material sciences. The technique uses long wavelength, typically in the near IR, as the excitation light to obtain shorter wavelength fluorescence (e.g. visible light). Because of the low linear absorption coefficient of most biological and polymeric specimens, this technique allows deeper penetration of the excitation beam, achieving optical sectioning to a depth of 250μm or more into the specimen. As a result of the quadratic dependency of the two-photon induced fluorescence to the excitation intensity, the fluorescent emission and photobleaching are limited to the vicinity of focal spot. This capability of addressing a specimen’s 3D space allows exciting possibilities in biological researches, such as 3D photobleaching recovery experiment. Two-photon confocal fluorescence microscopy is ideal for the study of thick biological and material specimen in 3D. For example, Figure 1 shows a three-dimensional isosurface rendered image of a vascular bundle from a maize stem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.