Abstract

We report on two-photon interference (TPI) experiments using remote deterministic single-photon sources. Employing 3D in-situ electron-beam lithography, we fabricate quantum-light sources at specific target wavelengths by integrating pre-selected semiconductor quantum dots within monolithic microlenses. The individual single-photon sources show TPI visibilities of 49% and 22%, respectively, under pulsed p-shell excitation at 80 MHz. For the mutual TPI of the remote sources, we observe an uncorrected visibility of 29%, in quantitative agreement with the pure dephasing of the individual sources. Due to its efficient photon extraction within a broad spectral range (>20 nm), our microlens-based approach is predestinated for future entanglement swapping experiments utilizing entangled photon pairs emitted by distant biexciton-exciton radiative cascades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call