Abstract

We investigate the two-photon fluorescence (TPF) of conjugated polymer (CP) microspheres with diameters up to tens of micrometers. Two polymers, emitting in either the violet or red, were first synthesized and characterized in terms of their one-photon fluorescence and three-dimensional internal microstructure. Under femtosecond infrared excitation, both types of microspheres showed a strong TPF, which was investigated by the excitation intensity dependence, emission spectroscopy, time-resolved luminescence, and photobleaching dynamics. While the violet-fluorescent microspheres performed similarly compared to dye-doped polystyrene counterparts emitting at a similar wavelength, the red-fluorescent microspheres showed a two-orders-of-magnitude stronger TPF. This excellent performance is attributed to enhanced hyperpolarizability associated with intermolecular interactions in the polymer solid, indicating a route toward designed CP microspheres that could outperform currently-available microparticles for sensing or imaging applications involving two-photon fluorescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call