Abstract
Lipid droplets (LDs) and their autophagy by lysosomes are closely related to a variety of physiological and pathological conditions. Therefore, identifying and tracking LDs and the dynamic process of autophagy can provide useful information for the diagnostics and treatment of related diseases. However, few organic small molecule-based fluorescent probes can specifically recognize LDs and dynamically track their autophagy process. Herein, we synthesized a "discoloration" fluorescent bioprobe DPABP-BI with distinguishable features including red fluorescence emission (630 nm), large Stokes shift (145 nm), two-photon excitation and outstanding photostability and biocompatibility. In particular, LDs could be specifically identified via the red fluorescence emission of DPABP-BI (colocalization constant of 0.98), while autophagolysosomes could be visualized via the green fluorescence emission of its acid-hydrolyzed product (colocalization constant of 0.90) to track the autophagy dynamic process. In addition, DPABP-BI enabled the specific recognition of fatty substances in zebrafish larvae. In this study, a two-photon excited red light small molecule probe was constructed to identify LDs and track their autophagy dynamic process by changing the fluorescence emission wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.