Abstract

The photophysics of an inorganic/organic hybrid system was studied by time-resolved optical spectroscopy, focusing on the goal of increasing the two-photon efficiency of photoresponsive systems. The hybrid system consists of CdS/ZnS core/shell quantum dots (QDs) as energy donor and coumarin derivatives as energy acceptor molecules. The spectral overlap of QD emission and coumarin 343 absorption promotes a Förster resonance energy tranfer (FRET) mechanism leading to a FRET efficiency up to nearly 90%. Additionally, time-correlated single photon counting showed a faster fluorescence decay while acceptor molecules were attached to the QD surface. Femtosecond transient absorption measurements demonstrated an ultrafast FRET reaction. Importantly, FRET was observed also after two-photon excitation of the QDs indicating that the chosen QDs can act as two-photon antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.