Abstract
In this paper, a two-phase palmprint recognition approach is proposed based on statistical features and wide principal line image features through dynamic region of interest (ROI). The ROI is segmented into overlapping segments by six schemes, and the statistical features are extracted directly from the segments. The algorithm focuses on the extraction of statistical features based on standard deviation and coefficient of variation. A modified dissimilarity distance is proposed for computing the distance between two palmprints. The procedures are presented for determining the size and location of the common region of training images dynamically. Experiments are conducted by using statistical features and the combination of statistical and wide principal line image features. The results show that the correct recognition rate (CRR) of the proposed approach is better than existing methods for PolyUPalmprint database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.