Abstract
The International Atomic Energy Agency (IAEA) has been encouraging the use of passive cooling systems in new designs of nuclear power plants. Next nuclear reactor generations are intended to have simpler and robust safety resources. Natural Circulation based systems hold an undoubtedly prominent position among these. The study of limiting conditions of these systems has led to instability behavior analysis where many different two-phase flow patterns are present. Void fraction is a key parameter in thermal transfer analysis of these flow instability conditions. This work presents a new method to estimate void fraction from images captured of an experimental two-phase flow circuit. The method integrates a set of Artificial Neural Networks with a modified Randomized Hough Transform to make multiple scans over acquired images, using crescent-sized masks. This method was called Randomized Hough Transform with Neural Network (RHTN). Each different mask size is chosen according with bubble sizes, which are the main ‘objects of interest’ in this image analysis. Images are segmented using fuzzy inference with different parameters adjusted based on acquisition focus. Void fraction calculation considers the volume of the imaged geometrical section of flow inside cylindrical glass tubes considering the acquisition depth-of-field used. The bubble volume is estimated based on geometrical parameters inferred for each detected bubble. The image database is obtained from experiments performed on a vertical two-phase flow circuit made of cylindrical glass where flow-patterns visualization is possible. The results have shown that the estimation method had good agreement with increasing void fraction experimental values. RHTN has been very efficient as bubble detector with very low ‘false-positive’ cases (<0.004%) due robustness obtained through integration between Artificial Neural Networks with Randomized Hough Transforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.