Abstract

A two-phase cooling system with a jet pump is proposed for the thermal control of spacecraft. The system does not require an external source of energy, the pumping of the working fluid is performed by the work that is produced in a thermodynamic cycle being carried out in the heat transport loop. The cooling system has no moving parts or control devices, with the exception of a mechanical pump and an actuated valve, that are used only for the startup sequence. This article reports on the results of the theoretical and experimental studies of the two-phase thermal control system with a jet pump for spacecraft application. A mathematical model for the steady-state analysis of the proposed system was developed. The model was applied to predict overall performance characteristics and operating range for a specific spacecraft two-phase cooling system. The possible reasons for the fluid loop operation failures were identified. The influence of the accumulator volume on the system characteristics was also investigated. Three jet pumps of various configurations were tested and stable operational regimes of the cooling system were obtained under different heat-load and heat-rejection conditions on a ground experimental facility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call