Abstract

The newly developed self-adaptive turbulence eddy simulation (SATES) method coupled with three turbulent combustion models, i.e., the finite-rate model, eddy-dissipation model, and steady laminar flamelet model, is used to numerically study the non-premixed supersonic hydrogen combustion in a DLR (German Aerospace Center) model scramjet combustor with a wedge flame holder. The study investigates the interactions of the shock waves and the flowfields as well as the flame structures. The SATES-based combustion simulation results demonstrate satisfactory agreement with the available experimental data. The study also explores the effect of fuel injection temperature on the combustion process and reveals that an increase in hydrogen temperature improves combustion efficiency. Additionally, thermal radiation effects are considered with the discrete ordinates method/weighted-sum-of-gray-gases method. The results indicate that thermal radiation heat transfer reduces the flame temperature and significantly affects the flame shape and temperature fluctuations. Also, radiation heat flux is an important factor and should be included in supersonic combustion simulations. The study demonstrates the potential of the SATES method for complex supersonic combustion and also provides a reference for thermal radiation in supersonic combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.