Abstract
The organic matter bioconversion into methane during anaerobic digestion (AD) comprises different steps, the acidogenic and methanogenic phases being clearly distinct in terms of metabolic activities. In this work, new configurations of anaerobic fixed bed biofilm reactors (AFBBR) were operated under conventional methanogenic conditions (single phase - SP-AFBBR, M1R), and in a sequential two-phase system, acidogenic reactor followed by methanogenic reactor (TP-AFBBR, AcR+M2R), in order to verify the impact of the AD phase separation on the overall system performance in operational, kinetics and microbiological aspects. The results indicated that feeding the methanogenic reactor with the acidogenic effluent stream provided a shorter operating start-up period (11 and 32 days for SP and TP-AFBBR, respectively), a greater alkalinity generation (0.14 and 0.41g-CaCO3·g-CODremoved-1 for M1R and M2R, respectively), and the optimization of biomethane production (methane yield of 95 and 154N-mLCH4·g-CODremoved-1 for M1R and M2R, respectively). The COD removal kinetics was also favored in the TP-AFBBR (k1-COD=1.4 and 2.9 h-1 for M1R and M2R, respectively), since the soluble fermentation products were readily bioavailable to the biomass in the reactor. Hydrogenotrophic methanogenesis was the predominant pathway in the M2R, while the Methanosaeta-driven acetoclastic pathway predominated in the M1R. The greater diversity of Bacteria and Archaea in M2R denotes a better balance between the species that degrade volatile organic acids from AcR (i.e. Syntrophorhabdus, Syntrophus and Syntrophobacter) and the hydrogenotrophic methanogens (Methanoregula, Methanolinea and Methanospirillum) that consume the biodegradation products. The estimated bioenergy generation potential (range of 0.39-0.64kWh·m-3-sewage considering the COD removed) for full-scale TP-sewage treatment plants evidences the feasibility of energetic recovery in the domestic sewage anaerobic treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.