Abstract

Recent advances in many-body physics have made it possible to study correlated electron systems at the two-particle level. In Dynamical Mean-Field theory, it has been shown that the metal-insulator phase diagram is closely related to the eigenstructure of the susceptibility. So far, this situation has been studied using accurate but numerically expensive solvers. Here, the Iterated Perturbation Theory (IPT) approximation is used instead. Its simplicity makes it possible to obtain analytical results for the two-particle vertex and the DMFT Jacobian. The limited computational cost also enables a detailed comparison of analytical expressions for the response functions to results obtained using finite differences. At the same time, the approximate nature of IPT precludes an interpretation of the metal-insulator transition in terms of a Landau free energy functional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.