Abstract

In order to explore the reason why the single-layered cuprates, La(2-x)(Sr/Ba)(x)CuO4 (T(c)≃40 K) and HgBa2CuO(4+δ) (T(c)≃90 K) have such a significant difference in T(c), we study a two-orbital model that incorporates the d(z2) orbital on top of the d(x2-y2) orbital. It is found, with the fluctuation exchange approximation, that the d(z2) orbital contribution to the Fermi surface, which is stronger in the La system, works against d-wave superconductivity, thereby dominating over the effect of the Fermi surface shape. The result resolves the long-standing contradiction between the theoretical results on Hubbard-type models and the experimental material dependence of T(c) in the cuprates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.