Abstract
In this study, we developed two different very sensitive magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors for the selective detection of Cr(VI) ions. The Cr(VI) metal ions sensing is based on the fluorescent quenching of BODIPY functionalized with Fe3O4@SiO2-TPED and Fe3O4@SiO2-TMPTA nanoparticles in the ethanol-water environment. Characterization of the newly synthesized fluorescent BODIPY compound was performed on a 1H and 13C-NMR spectrometer. The morphology, chemical and physical properties of the sensing nano-sensors were studied by transmission thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), FT-IR spectroscopy, and transmission electron microscopy (TEM). UV-visible and fluorescent spectroscopy were used to characterize BODIPY functionalized magnetite fluorescent nano-sensors. Characterization measurements revealed that the mean particle diameter of magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors was 18.5 and 19nm, respectively. The magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors (0.1 gL-1 in EtOH/H2O, v/v (3/7)) showed fluorescence quenching responses towards Cr(VI) ions in the medium at pH:1. The fluorescence quenches of the magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors by Cr(VI) were completed in first 5 and 3min. Respectively. These features provide potential uses of BODIPY functionalized magnetite fluorescent nano-sensors (Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY) as a new class of non-toxic sensors for environmental applications. Graphical Abstract.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have