Abstract
The synthesis and magnetic properties of two new hexanuclear iron complexes [Fe6O2(OH)2(O2CR)10L2] (R = But (3), Me (4); LH = 2-(2-hydroxyethyl)pyridine (hepH) (3), 6-methyl-2-(hydroxymethyl)pyridine (Me-hmpH) (4)) are reported. Both compounds are prepared by treatment of [Fe3O(O2CR)6(H2O)3]+ with three equivalents of LH in MeCN. The X-ray crystal structure of 3·2CHCl3·2H2O is presented. It consists of a planar array of six Fe3+ ions comprising two [Fe3(μ3-O)] subunits that are related by an inversion centre and linked at two of their apices, each linkage consisting of one μ-hydroxo and two μ-carboxylato groups. DC magnetic susceptibility measurements at 1.0 and 0.10 Tesla in the 2.0–300 K range show an increase in the effective magnetic moment with decreasing temperature, corresponding to a high spin (S) ground state. The spin of the ground state was established by magnetization measurements in the 1.0–7.0 T field range and 1.7–4.0 K temperature range. Fitting of the reduced magnetization data by full matrix diagonalization, incorporating both axial and rhombic anisotropy, gave S = 5, g = 1.96, D = 0.46 cm−1 and |E| = 0.046 cm−1 for 3, and S = 5, g = 2.07, D = 0.27 cm−1 and |E| = 0 cm−1 for 4. Alternative fits with a negative ZFS were rejected based on their relative fitting error as well as on measurements of the magnetization relaxation behaviour of the complexes at very low temperature (≥0.04 K), where no hysteresis characteristic of a single-molecule magnet was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.