Abstract

To understand the phase behaviors of polyelectrolyte solutions, we provide two analytical methods to formulate a molecular equation of state for a system of fully charged polyanions (PAs) and polycations (PCs) in a monomeric neutral component, based on integral equation theories. The mixture is treated in a primitive and restricted manner. The first method utilizes Blum's approach to charged hard spheres, incorporating the chain connectivity contribution by charged spheres via Stell's cavity function method. The second method employs Wertheim's multi-density Ornstein-Zernike treatment of charged hard spheres with Baxter's adhesive potential. The pressures derived from these methods are compared to available molecular dynamics simulations data for a solution of PAs and monomeric counterions as a limiting case. Two-phase equilibrium for the system is calculated using both methods to evaluate the relative strength of phase segregation that leads to complex coacervation. Additionally, the scaling exponents for a selected solution near its critical point are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.