Abstract
Supercontraction in dragline silk of Nephila edulis spider is shown to have two distinct components revealed by single fiber measurements using dynamic mechanical thermal analysis. The first component relies on a contraction of maximum 13% and seems to be associated with relaxation processed through the glass transition, T(g), as is induced by increasing temperature and/or humidity. The second component is induced by liquid water to the total contraction of 30%. The T(g)-induced contraction is linearly correlated with the restraining stress on the fiber, and the mechanical properties of the partially contracted silk have mechanical profiles that differ from both native and fully supercontracted fibers. Here we present novel supercontraction data and discuss their structural origins, examining the relaxation of stretched orientation in the different primary structure sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.