Abstract
This study found that the sources of cellulose have a significant effect on the parameters related to the kinks present in nanocellulose. During nanocellulose preparation, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation induced partial depolymerization on whole cellulose and made the amorphous regions more susceptible to consequent mechanical treatment irrespective of cellulose sources. However, plant cellulose microfibrils were prone to break into shorter nanocellulose with fewer kinks, while bacterial and tunicate cellulose were more likely to bend rather than break, thus leading to the generation of more kinks. The kinks did not show significant effects on the size, crystallinity index, and thermal properties of nanocellulose for each cellulose source, though the kink numbers were positively related to the mechanical performance of nanocellulose. Collectively, this study elucidated the kink formation mechanisms and clarified the effects of kinks on nanocellulose performance, thus providing new insights into understanding the source and behaviors of microdefects present in nanocellulose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.