Abstract

The simpler the design, the better and more effective it is. Two novel conjugated triarylamine derivatives in donor−π–donor structure employing biphenyl core and pyrene core as π-bridges, which are termed as Bp-OMe and Py-OMe, have been synthesized and characterized and then applied to perovskite solar cells (PSCs) as hole-transport materials (HTMs) successfully. Using 2,2′,7,7′-tetrakis(N,N-di-p-methoxy-phenylamine)-9,9′-spirobiuorene (spiro-OMeTAD) as a relative reference, Py-OMe-based PSCs showed the best power conversion efficiency (PCE) of 19.28% under AM 1.5 G illumination at 100 mW cm–2, which is comparable to that of PSCs based on spiro-OMeTAD with a best PCE of 18.57% with doping. Although Bp-OMe-based PSCs performed with relatively poor PCEs (best PCE of 15.06%) than those of Py-OMe-based PSCs, attributing to the poor planarity and hole mobility, taking the cost into consideration, Bp-OMe and Py-OMe are much more likely to be promising efficient HTMs for PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call