Abstract

Organic–inorganic hybrid perovskite solar cells (PSCs) have received considerable attentions due to their low cost, easy fabrication, and high power conversion efficiency (PCE), which achieved a certified PCE of 22.7%. To date, most of high efficiency PSCs were fabricated based on organic hole transporting materials (HTMs) such as molecular spiro-MeOTAD or polymeric PTAA. However, poor stability of PSCs limits its large scale commercial application because of use of additives like tert-butylpyridine (t-BP) and lithium salt. Moreover, relatively low-temperature degradation of organic HTMs is responsible for poor thermal stability of PSCs. Consequently, HTM play a crucial role in realization of efficient and stable PSCs. In order to improve the stability of PCSs, various inorganic HTMs have been developed and applied into PSCs. Recently, the devices based on CuSCN and Cu:NiOx HTMs have demonstrated PCEs over 20%, which is comparable to PCEs of devices based on organic HTMs. Most importantly, stability of PC...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call