Abstract
With the fast development of DC Microgrid (MG) technology, its operating economy and reliability are getting more and more concern. The traditional distributed control method is aimed at power balance and system stability, and is difficult to meet the requirement of energy management system for multi-source hybrid DC MG. This paper provides a two-level energy management strategy for PV-fuel cell-battery-based DC MG, which is divided into device control level and system control level. At the device control level, the distributed control methods based on MPPT-droop dual-mode control and droop control are proposed to enhance system reliability; at the system control level, the equivalent consumption minimization strategy (ECMS) is used to distribute system net power between battery pack and fuel cell system. A lab-scale DC microgrid platform is developed to verify the proposed energy management strategy in this paper. Moreover, the analysis and compare of the results show that the proposed two-level energy management strategy can achieve lower equivalent hydrogen consumption than classical PI control and state machine control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.