Abstract
AbstractIn this paper, we study how to distinguish the embedded topology of a smooth quartic and its bitangent lines. In order to do this, we introduce the concept of two-graphs and switching classes from graph theory. This new method improves previous results about a quartic and three bitangent lines considered by E. Artal Bartolo and J. Vallès, four bitangent lines considered by the authors and H. Tokunaga, and enables us to distinguish the embedded topology of a smooth quartic and five or more bitangent lines. As an application, we obtain a new Zariski 5-tuple and a Zariski 9-tuple for arrangements consisting of a smooth quartic and five of its bitangent lines and six of its bitangent lines, respectively.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have