Abstract

The area-averaged two-fluid model formulation of a separated two-phase flow system is used to investigate interfacial stability of liquid film flows. The analysis takes into account the effects of phase change at the interface as well as the dynamic effects of the adjacent vapor flow on the interfacial stability. Wave formation and instability criteria are established in terms of the generalized fluid and flow parameters. The criteria are applied to investigate the stability of laminar liquid film flow with interfacial shear and phase change. The influence of various dimensionless parameters characterizing film thickness, gravity, phase change and interfacial shear are studied with respect to the neutral stability, temporal growth factor and the wave propagation velocity. The results of the present study indicate that the interfacial stability analysis developed within the frame of the two-fluid model formulation proves to be quite accurate as judged by comparing its results with the available experimental data and with the results of much longer and more complex analytical investigations which are valid only for the liquid film free of interfacial shear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.