Abstract

A three-dimensional (3D) visualization of the target region during intravascular interventions in real-time is challenging since the acquisition of a time-consuming 3D dataset is required. In this work, a novel stereoscopic double echo sequence for achieving 3D depth perception by sampling only two oblique projection images is presented. A double echo (DE) FLASH pulse sequence was developed to acquire continuously stereoscopic image pairs of the vascular target anatomy. Stereo image data were displayed on a stereoscopic 3D LCD monitor in real time after image reconstruction. Phantom experiments followed by a depth perception test were performed to assess the usability of the stereo image pairs for 3D visualization. In an animal experiment the sequence was tested in vivo and was compared with a slower interleaved (IL) sequence variant. In the phantom experiments an SNR difference of 6 % between left and right image was found which did not influence the depth perception. The DE acquisition was superior to the IL sequence (SNR(DE) = 10.3, 2.3 images/s over SNR(IL) = 7.1, 1.7 images/s), and during contrast enhancement the abdominal arterial vasculature was clearly perceived as a 3D structure. A novel stereoscopic DE pulse sequence can be utilized for the fast 3D stereoscopic visualization of vascular structures in real-time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call